

Finanziato dall'Unione europea NextGenerationEU

(PRIN 2022, COD. PROTOCOLLO: 2022H3S28T, CUP MASTER: D53D23005410006) FINANZIATO DALL'UNIONE EUROPEA – NEXT GENERATION EU, PNRR - MISSIONE 4 "ISTRUZIONE E RICERCA" - COMPONENTE C2 INVESTIMENTO 1.1 "FONDO PER IL PROGRAMMA NAZIONALE DI RICERCA E PROGETTI DI RILEVANTE INTERESSE NAZIONALE (PRIN)" D.D. N. 104/2022 "BANDO PRIN 2022". PE11 Engineering of Metals and alloys.

EuroCorr 2024 Paris | 1st – 5th September 2024 Plasma Electrolytic Oxidation (PEO) corrosion resistant coatings on aluminium 2024 texturized

with a riblet-like surface for aeronautical

applications

M. Gamba¹, A. Brenna¹, F. Ceriani¹, M. Ormellese¹, M. Fedel², A. Cristoforetti²

¹ Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano ² Dipartimento di Ingegneria Industrale, Università di Trento

DI MILAN

Plasma Electrolytic Oxidation (PEO) corrosion resistant coatings on aluminium 2024 texturized with a riblet-like surface for aeronautical applications

1863

M. Gamba¹, A. Brenna¹, F. Ceriani¹, M. Ormellese¹, M. Fedel², A. Cristoforetti²

¹Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano

²Dipartimento di Ingegneria Industriale, Università di Trento

MAKO: Biomimetic Corrosion Resistant Aluminium for Aeronautics

Combining the Mako shark skin texture

Reduction of turbulence Drag & consumption reduction "Functional" surface with a plasma-based anodic coating on aluminium 2024 alloy

Project Outline

WP1. Texture definition

WP2. Riblets production

WP3. PEO coating

WP4. Corrosion testing

The research activity is co-funded by the European Union – Next Generation EU, PNRR - mission 4 "instruction and research" - D.D. N. 104/2022 "BANDO PRIN 2022".

Finanziato dall'Unione europea NextGenerationEU

Definition of the biomimetic texture

Biomimetic texture production on AA2024 alloy

PEO coating optimization: Methods and procedure

PEO coating optimization: *Electrical input definition*

Current density \rightarrow Growth rate

Applied potential

Must allow sparking onset Current is proportional to him

TEXTURE DEFINITION

POLITECNICO

MILANO 1863

Maintenance allows coating growth Decreasing current during growth Larger sparks at longer times

DEPARTMENT OF CHEMISTRY

MATERIALS AND CHEMICAL

ENGINEERING

PEO electrolyte optimization: Sodium silicate (Na₂SiO₃)

PEO electrolyte optimization: *Sodium hydroxide (NaOH)*

PEO electrolyte optimization: Sodium hydroxide (NaOH)

Vacuum Mode = High Vacuum Mag = 5.00 K X

Chamber = 1.04e-003 Pa Reference Mag = Out Dev.

SAMM

—Without NaOH With NaOH

EHT = 20.00 M

WD = 9.0 mm

H

I Probe = 100 pA

Detector = SEI

Coating compaction

Large uptake of **amorphous silica**

Sodium aluminates needles on the surface

PEO electrolyte optimization: Alkalinity (OH-)

PEO electrolyte optimization: Alkalinity (OH-)

POLITECNICO

MILANO 1863

DEPARTMENT OF CHEMISTRY

MATERIALS AND CHEMICAL

ENGINEERING

Less sodium aluminates detected

CONCLUSIONS

PEO APPLICATION ON

TEXTURED SURFACES

Identification of the best procedure: Effect of the environment

Identification of the best procedure: Long-term behaviour

The three coatings selected above have been exposed for 96h in 3.5% w/w NaCl simulating seawater.

Coating application to the textured surfaces

ENGINEERING

Coating application to the textured surfaces

A comprehensive comparison between the PEO processes

Sodium silicate-free process has been **discarded**.

Sodium hydroxide-free process is not accurate enough at reproducing the biomimetic texture.

Low-alkali process shows a **slightly larger durability** due to the improved **microstructure**.

Conclusions and future developments

- Sodium silicate (Na₂SiO₃) help developing thick and corrosion resistant coatings.
- Sodium hydroxide (NaOH) offers a compaction effect, increasing corrosion resistance.
- A reduction of alkalinity (OH-) leads to a better microstructure, but with a reduced growth rate.
- All the coatings show a quite fast degradation when exposed to aggressive environments.
- PEO can reproduce the biomimetic texture, with an accuracy depending on the electrolyte.
 - Studying the corrosion resistance of the textured and coated surfaces.
 - Implementing a pore sealing post-treatment for reducing porosity.
 - Addressing the riblets tip rounding issue during PEO.

Thanks for your attention!

Follow the shark!

in @makoproject

The research activity is co-funded by the European Union – Next Generation EU, PNRR - mission 4 "instruction and research" - D.D. N. 104/2022 "BANDO PRIN 2022".

Finanziato dall'Unione europea NextGenerationEU

