

(PRIN 2022, COD. PROTOCOLLO: 2022H3S28T, CUP MASTER: D53D23005410006) FINANZIATO DALL'UNIONE EUROPEA – NEXT GENERATION EU, PNRR - MISSIONE 4 "ISTRUZIONE E RICERCA" - COMPONENTE C2 INVESTIMENTO 1.1 "FONDO PER IL PROGRAMMA NAZIONALE DI RICERCA E PROGETTI DI RILEVANTE INTERESSE NAZIONALE (PRIN)" D.D. N. 104/2022 "BANDO PRIN 2022". PE11 Engineering of Metals and alloys.

Producing Plasma Electrolytic
Oxidation (PEO) corrosion
resistant coatings on aluminium
2024 texturized with a riblet-like
surface for aeronautical
applications

Matteo Gamba¹, Marco Ormellese¹, Andrea Cristoforetti², Michele Fedel², Andrea Brenna¹

EMCR 2025

San Servolo (VE) | 15-19 giugno 2025

¹ Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano

² Dipartimento di Ingegneria Industrale, Università di Trento

Producing Plasma Electrolytic Oxidation (PEO) corrosion resistant coatings on aluminium 2024 texturized with a riblet-like surface for aeronautical applications

M. Gamba¹, M. Ormellese¹, A. Cristoforetti², M. Fedel², A. Brenna¹

- ¹ Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Milano
- ² Università di Trento, Dipartimento di Ingegneria Industriale, Trento

- Sharkskin biomimetic textures are able to reduce fluid dynamic drag during motion.
- Plasma Electrolytic Oxidation (PEO) coatings proved to be effective for corrosion protection on aluminum alloys.
- Their combination would offer desirable surfaces for aeronautical vehicles.

matteo.gamba@polimi.it

Materials

- Methods
- **5** 0.4 0.0 50 100 150 200 250 300 350 Time [ms]

Waveform used for PEO electrical input. Square signal, 60% time in anodic polarization, cathodic amplitude 7% of anodic one.

- $s = 200 \mu m$ $h = 75 \mu m$
- The PEO electrical process was fixed. A common silicate-alkaline electrolyte was used as a starting point, with glycerin for reducing splash-out.
- Different PEO electrolytic solutions were studied to optimize the cationic composition, the alkali concentration and the organic additives.
- Coating evaluated by **SEM microscopy** and **electrochemical testing**.

and total duration around 15 min.

Electrolyte	Alkali		Additives		
	KOH, mol/L	NaOH, mol/L	CH ₃ COOH, g/L	Na ₂ SiO ₃ , g/L	Glycerin, g/L
0.20 KS	0.20	-	-	10	10
0.20 KNS	0.04	0.16	-	10	10
0.09 KNS	0.014	0.076	-	10	10
0.09 KNSA	0.014	0.076	10	10	10

Electrolytic solutions used for PEO coatings.

Discharge features

- More intense sparking corresponds to more defected, but thicker, coatings.
- Spark intensity depends on oxide thickness, electrolyte resistivity and double layer formation.
- Spark characteristics can be modified by acting on the electrolytic solution composition.

Due to the lower mobility of Na+ with respect to K⁺ double layer formation is slower in 0.20 KNS, giving a stronger, but more homogeneous, sparking.

ALKALI CONCENTRATION EFFECT Reducing alkali concentration the electrolyte becomes resistive, obtaining weaker sparks.

Stronger plasma sparks Thicker coating Larger defects 0.20 KS **0.20 KNS** 0.09 KNS 0.09 KNSA Weaker plasma sparks

Thinner coating **Smaller defects**

SEM 1000x magnifications of coatings. Pores and cracks amount decreases with spark intensity.

Corrosion resistance

- All the coatings reduce i_{corr} of AA2024 by at least 10 times.
- Electrochemical testing shows that less defected coatings are more protective, irrespectively of their thickness.

Potentiodynamic polarization 20 ppm Cl⁻, 1 h immersion

Sharkskin

- Not all the processes are accurate.
- Electrolytes able at reducing spark intensity give better reproduction.

Conclusions and future development

- The amount of coating defects decreases by decreasing spark intensity during PEO. Thus, coating homogeneity, corrosion resistance and texture reproduction are improved.
- Substituting K+ cations with Na+ ones, reducing the amount of alkali and introducing acetic acid are effective strategies for reducing discharge intensity.
- Coating pore sealing for increasing the corrosion resistance of the PEO coatings.

